5, Hood. (PAL) | APPLICA | TYN | 1 | 14001 | FEVIS | CHS | | | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------| | 'NEXT ASSY. | USED ON | LTR | | DESCRIPTION | | DATE | APPROVED | | TEXT ASST. | A500 | A | PRODUCTION | | | 11-10-87 | Sent 1 | | | | В | REVISED PER E | | | 6-29-88 | 2. Buch | | 1.0 DESCR | IPTION | C | REVISED PER E | | | 7-20-88 | | | This s<br>The IC<br>DMA ac<br>device | pecification<br>device desc<br>idresses usi<br>shall conta | cribe<br>ng a<br>ain 2 | cribes the required herein shall RAM Address Ge 5 DMA channel of Disk and Memo | produce, in a nerator and a controllers that | 68000 micropro<br>Register Addre | cessor en | vironmen<br>r. This | | MHz an | d 3.55 MHz s | system | 3.375 MHz cry<br>n clocks, dynam<br>PAL video syn | ic RAM interfa | ce for addres | 1 Th. C | 1,177 | | for Pi | n Descriptio | on. | Pin Configurati<br>This IC device<br>gister Address | shall be equi | | | nd Table | | 1.1 CONFIG | URATION | | | 803<br>804<br>805<br>806<br>807 | 809<br>8011<br>8013<br>8013<br>8014<br>8014<br>8015<br>VSS<br>HST* | VST<br>LP*<br>R18<br>R17<br>R16 | | | FIGURE CONFIG CONFIG CONFIG CONFIG CONFIDENTIAL PROPER REPRODUCTION OR DIS VITHOUT THE PRIOR | URATION RE AMIGA INC. NED HEREIN IS THE RTY OF COMMODORE SCLOSURE OF THIS WRITTEN PERMISSI | UNPUBL<br>AMIGA<br>INFORMA | ISHED AND INC. USE, ATION DMMODORE | ## - 15<br>## - 16<br>## - 17<br>## - 18<br>## - 19<br>## - 20<br>## | ABA | 25 5- | H14<br>A13<br>A12<br>A11<br>A10<br>A8<br>A7<br>A6<br>A5<br>A4<br>A3<br>A2<br>A1<br>A19<br>VSS<br>RASO*<br>RASI*<br>CASU*<br>CASU* | | OMMODORE PART # | T | RESER | /ED | T | 1 | | | | New consequences of the co | 317103 | | | | - - | | | | 318071-01 | Active | | | 225 | _ | | 2 | | | | | | | | | | | INLESS OTHERW<br>IMENSIONS ARE | ISE SPECIFIEI<br>IN INCHES | DRV<br>J. | VN<br>F.Broderick<br>STEMS ENG | 1-28-87 | comm | odor | e 🖫 | | OLERANCES<br>ANGLES +/- 1 I<br>PLACE DECIMA<br>PLACE DECIMA | DEGREE<br>LS +/02<br>LS +/010 | eir e | CUIT ENG, | 4/15/87 TITLE<br>4/15/87 | IC, N-CHAR<br>DMA CONTROL | | | | | | CON | AP ENG BURBS | SIZE A SCALE | | 318071<br>T 1 | OF 39 | ### FIGURE 2 - BLOCK DIAGRAM ### TABLE 1 - PIN DESCRIPTION | | | | e N | |---------------------|-----------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------| | PIN | PIN | SIGNAL | | | NAME | NUMBER | DIRECTION | DESCRIPTION | | A19-A1 | 59 thru 77 | IN | Address bus - Al to A8 are used by the processor to select the internal registers and put an address code on the RGA lines to select registers outside the device. | | | | (30) | | | | £) | | The processor uses Al to Al8 to generate multiplexed DRAM addresses on the MA outputs. The Al9 line is used to indicate which RAS | | | €I | | line is activated. If Al9 is high RAS1* is asserted; if low, RAS0* is asserted. | | RD15-RD0 | 1 thru 14 and 83 & 84 | I/O . | This data bus is buffered and is used by the processor to access the device | | e <sup>51 (M)</sup> | | | registers. The data bus is also accessed during DMA operations. | | 44 | | - 55 | | & commodore & IC, N-CHANNEL-HMOS DMA CONTROLLER (PAL) "FAT AGNUS" 8371 SIZE DRAWING NO. -318071 REV SCALE SHEET OF TABLE 1 - PIN DESCRIPTION (CONT'D) | PIN | PIN | SIGNAL | a s | |---------|------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | NAME | NUMBER | DIRECTION | DESCRIPTION | | AS* | 24 | IN | Active low. This input is the processor address strobe signal. When asserted, it indicates that the address lines (Al to Al9) are valid. | | RGEN* | 23 | | Active low. When this signal is asserted along with AS*, the processor uses Al to A8 to access one of the device registers or put a value on the RGA outputs to select registers outside the device. | | RAMEN* | 25 | IN. | Active low. When this signal is asserted together with AS*, the processor is doing a DRAM access. The processer supplies an address on the Al to Al8 inputs and the device multiplexes this address onto the MA | | | | | outputs; during the same cycle, the processor controls the Al9 line to select one of the RAS lines. | | PRW . | 22 | IN | This signal defines the data bus transfer as a read or write cycle to memory. The signal is only enabled when the processor is under- | | 7425 | 50<br>50 | | going a DRAM access. A low on this signal signifies a processor write cycle to memory; a high indicates a processor read cycle from memory. | | RRW | 21 | OUT | The device controls this signal to indicate either a DMA or processor DRAM read/write | | | | | access. In both cases, a low on this line indicates a write operation and a high indicates a read operation. | | MAO-MA8 | 43 thru 51 | OUT | Output bus. This 9 bit output bus provides multiplexed addresses to DRAMs. This bus operates in two cycles. The first cycle provides the DRAMs with the row address; the second cycle with the column address. It includes full 256K addressing for use with 256KX1 DRAMS. The IC only activates this | | | | | bus when the processor is doing a DRAM access (RAMEN* is low) or when the device itself is performing a DMA data transfer (DBR* is low). | ## commodore @ TITLE IC, N-CHANNEL-HMOS DMA CONTROLLER (PAL) "FAT AGNUS" 8371 SIZE DRAWING NO. 318071 REV SCALE SHEET 3 OF ### TABLE 1 - PIN DESCRIPTION (CONT'D) | PIN<br>NAME | PIN<br>NUMBER | SIGNAL DIRECTION DESCRIPTION | |-------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | LDS* | 52 | Active low. This input is the processor lower data strobe. It is enabled only during a processor DRAM access and forces the IC to assert CASL* to select the lower 256K memory bank. | | UDS* | 53 | IN Active low. This input is the processor upper data strobe. It is enabled only during a processor DRAM access and forces the IC to assert CASU*to select the upper 256K memory bank. | | CASL* | 54 . | OUT Active low. This output strobes the column address into the DRAMs and corresponds to the low byte of the data word. | | CASU* | 55 | OUT Active low. This output strobes the column address into the DRAMs and corresponds to the high byte of the data word. | | RASO* | 57 | OUT Active low. This output is used to strobe the row address into the DRAMs. This signal will be asserted only if the processor is doing a DRAM access and Al9 is low or if the IC is performing a DMA cycle (DBR* is low). RASO* corresponds to the lower 512K bytes of memory. | | RAS1* | 56 | OUT Active low. This output is used to strobe the row address into the DRAMs. This signal will be asserted only if the processor is doing a DRAM access and Al9 is high. The signal will not be asserted when the device is doing a DMA cycle. RAS1* corresponds to the upper 512K bytes of memory. | | DBR* | 20 | OUT Active low. The device asserts this signal to indicate that a DMA cycle is underway. The device performs DMAs only on the lower 512K bytes of memory when DBR* is low and RASO* is asserted. The only exception is when the device performs a DRAM refresh, in which case RASO*, RASI* and DBR* are all asserted. The device will also assert both CASL* and CASU* during DMAs except on a DRAM refresh cycle. | # Commodore C TITLE IC, N-CHANNEL-HMOS DMA CONTROLLER (PAL) "FAT AGNUS" 8371 | SIZE | DRAWING NO. | REV | | | |------|-------------|-----------|-------|------------| | | 318071 | 100-70-11 | SCALE | SHEET 4 OF | ### TABLE 1 - PIN DESCRIPTION (CONT'D) | 1 CONTRACTOR | | TE<br>W <u>ww.nama.europe</u> ron.ee-st | | |--------------|---------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | PIN<br>NAME | PIN<br>NUMBER | DIRECTION | DESCRIPTION | | RGA8-RGA1 | 26 thru 33 | | Output bus. The 8 bit output bus allows the device and the processor to access registers located outside the device. | | HSY* | 81 | I/O . | This line is bidirectional and buffered. This signal is the horizontal synchronization pulse and is PAL compatible. When set as an input, an external video source drives this signal to synchronize the horizontal beam counter. | | VSY* | 79 | I/O | This line is bidirectional and buffered. This signal is the vertical synchronization pulse and is PAL compatible. When set as an input, an external video source drives this signal to synchronize the vertical beam counter. | | CSY* | 80 | OUT | This signal is the composite video synchroniza-<br>tion pulse and is PAL compatible. | | LP* | 78 | IN · | Active low. This input is used to indicate when the light pen is coincident with the monitor beam. | | RST* | 18 | IN . | Active low. This input will initialize the device to a known state. | | INT3* | 17 | OUT | Active low. The device asserts this line to indicate that the blitter has completed the requested data transfer and that the blitter is then ready to accept another task. | | DMAL | 18 | IN | Active high. When this signal is enabled, it indicates that an external device is requesting audio and/or disk DMA cycles to be executed by the device. | | BLS* | | 12 S X | Active low. When this line is asserted, the device will suspend its blitter operation and allows the processer to have control of the cycle. | | 28MHZ | 34 | | This is a 28.375MHz input clock that provides the master time base for the device. This clock is enabled only when XCLKEN* is high. | ## a commodore TITLE IC, N-CHANNEL-HMOS DMA CONTROLLER (PAL) "FAT AGNUS" 8371 SIZE DRAWING NO. 318071 REV SCALE 5 OF SHEET ### TABLE 1 - PIN DESCRIPTION (CONT'D) | | PIN<br>NAME | PIN<br>NUMBER | /4 | SIGNAL<br>DIRECTION | DESCRIPTION | |----------------|-------------|---------------|----|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------| | • | XCLK | 35 | | | This input is an alternate master clock to the device. It is enabled when XCLKEN* is low. This input is used to synchronize the device with an external video source. | | | XCLKEN* | 36 | | | This input is used to select the master clock to the device. If it is high, the 28MHz input is enabled; if low, the XCLK is enabled. | | ( | CCK | 40 | | OUT | This signal is a clock, which is obtained after dividing the 28.375MHz clock by eight. | | ( | CCKQ | 39 | | QUT | This clock is the CCK clock shifted by 90 degrees. | | 12<br>10<br>11 | 7MHZ | 38 | | 1 | This clock is obtained after dividing the 28MHZ clock by four. | | | CDAC* | 37 | | OUT | This clock is obtained after inverting the 7MHZ clock and shifting it by 90 degrees. | | | rest | 41 | | | Active high. When this signal is asserted it disables the processor cycle and the 8371 internal registers can be accessed on every CCK clock cycle. | #### 1.2 SOURCES Refer to the Approved Vendors List for approved sources. C commodore TITLE IC, N-CHANNEL-HMOS. DMA CONTROLLER (PAL) "FAT AGNUS" 8371 SIZE DRAWING NO. REV SCALE SHEET ### 2.0 ELECTRICAL PARAMETERS ### 2.1 ABSOLUTE MAXIMUM RATINGS Stress above those listed may cause permanent damage to the device. This is a stress rating only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. | CHARAC | TERISTIC | MIN | MAX | UNITS | |--------|-----------------------------------|------|-------|-------| | 2.1.1 | Ambient Temperature<br>under Bias | -25° | +125° | С | | 2.1.2 | Storage Temperature | -65° | +150° | C | | 2.1.3 | Applied Supply Voltage | -0.5 | +7.0 | V | | 2.1.4 | Applied Output Voltage | -0.5 | +5.5 | V | | 2.1.5 | Applied Input Voltage | -2.0 | +7.0 | V | | 2.1.6 | Power Dissipation . | - 40 | 1.5 | W | #### 2.2 OPERATING CONDITIONS All electrical characteristics are specified over the entire range of operating conditions, unless specifically noted. All voltages are referenced to $V_{ss} = 0.0V$ . | CONDIT | CION | 7 160 N | Sf 38 | MIN | MAX | UNITS | |--------|------------------|---------------------|-------|------|------|-------| | 2.2.1 | Supply Voltage ( | V <sub>CC</sub> ) . | | 4.75 | 5.25 | V | | | Free Air Tempera | | | 0 | 70 | °C | ### 2.3 D.C. CHARACTERISTICS | CHARACTERISTIC | | SYMBOL MIN | | MAX | UNITS | CONDITIONS | |----------------|-------------------|------------|-----------------------------------------|--------------------|-------|-------------------------------------| | 2.3.1 | Input High Level | ·Vih | 2.0 | V <sub>cc</sub> +1 | ν | <del></del> | | 2.3.2 | Input Low Level | Vil | -0.5 | +0.8 | V | _ | | 2.3.3 | Output High Level | Voh | +2.4 | (-) | V | Ioh=300uA | | 2.3.4 | Output Low Level | Vol | - | 0.4 | • v | Io1=4.8mA | | 2.3.5 | Input Leakage | Iin | -10 | +10 | uA | 0.0V <vin<vcc< td=""></vin<vcc<> | | 2.3.6 | Output Leakage | Ilkg | -10 | 20 | uA | .4V <vout<2.4v< td=""></vout<2.4v<> | | 2.3.7 | Supply Current | Icc | ======================================= | 200 | mA | Outputs open | | 2.3.8 | Capacitance | Cpin | . = | 10 | pF | | ### commodore IC, N-CHANNEL-HMOS DMA CONTROLLER (PAL) "FAT AGNUS" 8371 DRAWING NO. REV SIZE SCALE SHEET 318071 ### 2.0 ELECTRICAL PARAMETERS (CONT'D) ### 2.4 A.C. CHARACTERISTICS Refer to Figure thru for waveform diagrams. CLOCK RELATIONS (Refer to Figure 4) | | | SYMBOL | MIN | MAX | UNIT | |----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------|-----------------|------------------| | 2.4.1 | 28MHz clock cycle | t28MC | 34.57 | 35.27 | ns | | 2.4.2 | 28MHz clock high | t28MHi | 12.0 | 22.9 | ns | | 2.4.3 | 28MHz clock low | t28MLo | 12.0 | 22.9 | ns | | 2.4.4 | | teye | 260 | 290 | ns | | 2.4.5 | CCK clock high | tch | 130 | 150 | ns | | 2.4.6 | CCK clock low | tcl | 130 | 150 | ns | | 2.4.7 | CCK-CCKQ clock separation | tcq | 65 | 75 | ns | | | | t7MC | 130 | 150 | ns | | 2.4.9 | | t7MHi | 65 | 75 | ns | | | 7MHz clock low | t7MLo | 65 | 75 | ns | | | 7MHz-CDACQ clock separation | t7MQ | 30 | 40 | ns | | | CCK to 7MHz delay | tc7M | 0 | 15 | ns | | | CCKQ to 7MHz delay | tQ7M | 0 | 15 | ns | | | Clock rise time | tr | 0 | 10 | ns | | 2.4.15 | Clock fall time | tf | . 0 | 10 | ns | | N. | PROCESSOR ACCESS (Refer to Figu | SYMBOL | MIN | MAX | UNIT | | -201 101 02120 | | | | 1444 | ONII | | | Address input setup time | tAddins | 45 | · · · | ns | | | Address input hold time | taddinh | 30 | 260 | ns | | 2.4.18 | Processor access control | iii | 10 | | * | | 0 / 10 | · · · · · · · · · · · · · · · · · · · | taccs | 10 | 9 <del></del> 3 | ns | | 2.4.19 | Processor access control | | • | | G. | | 2 / 20 | hold time | tacch | 0 | 220 | ns | | 2.4.20 | Access to address | | 20 | | | | 2 4 21 | invalid delay<br>Processor CAS access | taccad | 30 | | ns | | 2.4.21 | setup time | **** | 10 | * | 5 6 <u>5-2</u> 5 | | 2 4 22 | Processor CAS access | tpcs | 10 | - | ns | | 2.7.22 | | tpch | . 10 | 270 | 20.0 | | 2 4 23 | nord crmc | tdins | 50 | 270 | ns | | | Data input hold time | tdinh | 0 | <u>-</u> | ns | | | Reset input setup time | tresch | 50 | _ | ns<br>ns | | | | tchresh | 50 | E-01 | ns | | | 일반 | tDS | 115 | 1940 | ns | | | entrance of the control contr | tWP | 45 | _ | ns | | | | | | | | ## & commodore & TITLE IC, N-CHANNEL-HMOS DMA CONTROLLER (PAL) "FAT AGNUS" 8371 | | | 251 | | | | |------|------------|-----|-------|---------|------| | SIZE | DRAWING NO | REV | SCALE | SHEET 8 | OF . | | 29 | 318071 | | SUALE | JULE 1 | Or . | ### 2.0 ELECTRICAL PARAMETERS (CONT'D.) ### 2.4 A.C. CHARACTERISTICS (Cont'd.) | | D | EVICE ACCECC (Defen to Binner | ٠, | | | - | |----|--------|---------------------------------|---------------------------------------|-------|-------------------|-------------| | | ע | EVICE ACCESS (Refer to Figure 5 | 4 | MIN | MAY | IINITT | | | | | SYMBOL | MIN | MAX | <u>UNIT</u> | | | 2.4.27 | CCK low to DBR valid | 15 | | | | | | | prop time | tcldbr | 0 | 120 | ns | | | 2.4.28 | CCKQ high to RAS low | . KO | | | | | | | prop time | tcqrl | 7 | 18 | ns | | | 2.4.29 | CCKQ low to RAS high | # # # # # # # # # # # # # # # # # # # | 25000 | V III | | | | | prop time | tcqrh | 28 | 38 | ns | | | 2.4.30 | RAS precharge time | • | | | | | | | prop time | 'trp | 100 | 105 | ns | | | 2.4.31 | CCK low to CAS low | | | | Q., | | | | prop time | tckcl | _ | 6 | ns | | | 2.4.32 | CCK high to CAS high | | | 100 | | | | | prop time | tckch | - | 6 | ns | | | 2.4.33 | RAS address setup time | trass | 0 | <b>=</b> 2∧ | ns | | | 2.4.34 | RAS address hold time | trash | 15 | - | ns | | | 2.4.35 | CAS address setup time | tcass | 0 | III = | ns | | Ŷ. | 2.4.36 | CAS address hold time | tcash | 25 | - | ns | | | 2.4.37 | • | 4 | | 20002022 | | | | | prop time | tqlrgao | _ | 110 | ns | | | 2.4.38 | CCK low to RGA invalid | #3 | | | | | • | | prop time | tclrgaoh | 10 | <del></del> | ns | | | 2.4.39 | CCKQ high to Data valid | B | 2000 | 15865232 | | | ŝ | | prop time | tqhdo | 0 | - 150 | ns | | | 2.4.40 | | | (20) | 2.2 | | | | | prop time | tchdoh | 0 | 85 | ns | | | 2.4.41 | CCK high to Early read | | | 105 | | | | | Data prop time | tchedo | 0 | 125 | ns | | | | Write command setup time | twcs | 0 | <del>- 70</del> 6 | ns | | | 2.4.43 | Write command hold time | twch | 45 | | ns | | | MT | CCELLANEOUS (D. f b. D. | , ' | | | | | | MI | SCELLANEOUS (Refer to Figure 6 | | | 24177 | TINITO | | | | | SYMBOL | MIN | MAX | UNIT | | | 2.4.44 | LP*, DMAL input setup time | tiasch | 50 | (e) (e) | ns | | | | LP* input hold time | tchiah · | 50 | - | ns | | | | DMAL input hold time | tchdmalh | 15 | _ | ns | | | | | tiascl | 50 | 4 | ns | | | | BLS* input hold time | tcliah | 50 | · - | ns | | | | VSY.*, INT3* output prop time | tchob | 10 | 110 | ns | | | | CSY*, HSY* output prop time | tcob | 0 | 110 | ns | | | | | tibsch | 30 | | ns | | | | VSY*, HSY* input hold time | tchibh | 30 | - | ns | | | | | @ 35 | | | | ## a commodore a TITLE IC, N-CHANNEL-HMOS DMA CONTROLLER (PAL)' "FAT AGNUS" 8371 | SIZE | DRAWING NO. | REV | | | |------|-------------|------|-------|------------| | SIZE | 318071 | 1,50 | SCALE | SHEET 9 OF | Cacommodore Ca TITLE IC, N-CHANNEL-HMOS DMA CONTROLLER (PAL) "FAT AGNUS" 8371 SIZE DRAWING NO. 318071 REV SCALE SHEET 10 OF ### FIGURE 4 PROCESSOR ACCESS Ca commodore TITLE IC, N-CHANNEL-HMOS DMA CONTROLLER (PAL) "FAT AGNUS" 8371 SIZE A DRAWING NO. 318071 REV SCALE SHEET 11 OF FIGURE 5 DEVICE ACCESS ### FIGURE 6 ### MISCELLANEOUS ## @ commodore TITLE IC, N-CHANNEL-HMOS DMA CONTROLLER (PAL); "FAT AGNUS" 8371: SIZE A DRAWING NO. - - 318071 REV SCALE SHEET 13 OF #### 3.0 MECHANICAL REQUIREMENTS #### MARKING 3.1 Parts shall be marked with Commodore part number, manufacturer's identification and EIA date code. The device shall be rejected if EIA date code indicates an age of three (3) years or more. Pin No. 1 shall be identified. Refer to Figure 8 for the dimensions of the 84 pin plastic square chip. Dimensions are shown in English units. MIN..060 MIN..095 .026-.032 1.120 +/-.010 SO.CONTACT 50UARE DIMENSION 810.-E10. .042-:048 005-.015 ZRAD .030-.045 TYP. LEAD NO. I INDENT FIGURE 8 - CHIP PACKAGE DIMENSIONS #### 3.2 PROCESS QUALIFICATION TESTS Integrated Circuits supplied to the requirements of this specification shall also meet the requirements of the latest revision of Commodore Engineering Policy Instruction No. 1.02.008. Support documentation shall be made available by the supplier upon request. ### commodore & TITLE SCALE IC, N-CHANNEL-HMOS DMA CONTROLLER (PAL) "FAT AGNUS" 8371 DRAWING NO. SIZE 318071 REV SHEET 14 OF ### 4.0 MODES OF OPERATION #### 4.1 GENERAL This device is an address generator type IC. Its main function is as a RAM address generator and register address encoder that shall produce all DMA addresses from 25 channels. The block diagram (Figure 2) for this device shows the DMA control and address bus logic. The output of each controller indicates the number of DMA channels driving the Register Address Encoder and RAM Address Generator. The Register Address Encoder is a simple PLA type of structure that shall produce a predetermined address on the RGA bus whenever one of the DMA channels is active. The RAM Address Generator contains an 18 bit pointer register for each of the 25 DMA channels and also contains pointer restart (backup) registers and jump registers for six (6) of the channels. A full 18 bit adder carries out the pointer increments and adds for jumps. The priority control logic looks at the pipelined DMA requests from each controller and stages the DMA cycles based upon their programmed priority and sync counter time slot. Then it signals the processor to get off the bus by asserting the DBR line. The following is a brief description of the device's major operational modes. #### 4.2 BLITTER The procedure for moving and combining bit mapped images in memory received the name Bit Blit from a computer instruction that did block transfers of data on bit boundaries. These routines became known as Bit Blitters or Blitters. The Blitter DMA Controller is preloaded with the address and size of three (3) source images (A, B, and C) and one (1) destination (D) in the dynamic RAM (Refer to Figure 4). These images can be as small as a single character or as large as twice the screen size. They can be full images or smaller windows of a larger image. The actual pixel resolution is controlled by the BLTSIZE register which contains 10 bits for the image height (10 bits = 1024 dots max) and 6 bits for the image width (6 bits = 64 words = 1024 pixels max). After one word of each source image is sequentially loaded into the source buffer (A, B, C) they are shifted and then combined together in the logic unit to perform image movement overlay, masking, and replacements. The result is captured in the destination buffer (D) and sent back to the RAM memory destination address. This operation is repeated until the complete image has been processed. The unit has extensive pipelining to allow for shifter and logic unit propagation time, while the next set of source words is being fetched. ### commodore TITLE IC, N-CHANNEL-HMOS DMA CONTROLLER (PAL) "FAT AGNUS" 8371 SIZE DRAWING NO. 318071 REV. SCALE SHEET 15 OF A control register determines which of 256 possible logic operations is to be performed as the source images are combined and how far they are to be moved (Barrel shifted). In addition to the image combining and movement powers, the Blitter can be programmed to do line drawing or area fill between lines. ### FIGURE 9 - BLITTER BLOCK DIAGRAM #### 4.3 BITPLANE ADDRESSING Some computer bitmap displays are organized so that the bitplanes for each pixel are all located within the same address. This is called pixel addressing. If the entire data word of one address is used for a single pixel with 8 bit planes, the data word will look like this. (numbers are bitplanes): 12345678----- The data compression can be improved by packing more than one pixel into a single address like this: 1234567812345678 or like this, if there are only 4 bitplanes: 123412341234 commodore TITLE IC, N-CHANNEL-HMOS DMA CONTROLLER (PAL) "FAT AGNUS" 8371 SIZE DRAWING NO. 318071 REV SCALE SHEET 16 OF These are held in buffer registers and are used together as pixels, one bit at a time, by the display (left to right). This technique allows reduced odd numbers of bitplanes (such as 3 or 5) while maintaining packing efficiency and speed. It also allows grouping bitplanes into 2 separate images, each with independent hardware high speed image manipulation, line draw, and area fill. #### 4.4 DMA CHANNEL FUNCTIONS Each channel has an 18 bit RAM address pointer that is placed on the MA memory address bus and is used to select the location of the DMA data transfer from anywhere in 256K words (512K bytes) of RAM. An eight (8) bit destination address is simultaneously placed on the register address bus (RGA), sending the data to the corresponding register. Figure 10 shows a typical DMA channel and almost all channels have RAM as source and chip registers as destination. ### FIGURE 10 - DMA CHANNEL (TYPICAL) The pointer must be preloaded and is automatically incremented each time a data transfer occurs. Each controller utilizes one or more of these DMA channels for its own purposes. The following is a brief summary of these controllers and the DMA channels they use. Refer to Appendix A of this specification for raster line time allocation for each of these DMA channels. ### commodore TITLE IC, N-CHANNEL-HMOS DMA CONTROLLER (PAL) "FAT AGNUS" 8371 SIZE DRAWING NO. REV SCALE SHEET 17 OF ### A-Blitter (4 Channels) The Blitter uses four (4) DMA channels, three (3) sources and one (1) destination as previously described. Once the Blitter has been started, the four (4) DMA channels are synchronized and pipelined to automatically handle the data transfers without further processor intervention. The images are manipulated in memory, independent of the display (bitplane DMA). ### B-Bitplane(Six (6) Channels) The bitplane controllercontinuously(during display) transfers display data from memory to display buffer registers. There are six (6) DMA channels to handle the data from six (6) independent bit planes. The buffers convert this bitplane data into pixel data for the display. Each bitplane can be a full image or a window into an image that is up to four (4) times the screen size. They can be grouped into two (2) separate images, each with its own color registers. ### C-Copper (One (1) Channel) The Copper is a co-processor that uses one of the DMA channels to fetch its instructions. The DMA pointer is the instruction counter and must be preloaded with the starting address of Copper's instructions. The Copper can move (write) data into chip registers. It can skip, jump, and wait (halt). These simple instructions give great power and flexibility because of the following features. When the Copper is halted, it is off the data bus, using no bus cycles until the wait is over. The programmed wait value is compared to a counter that keeps track of the TV beam position (Beam Counter) and when they are equal, the Copper will resume fetching instructions. It can cause interrupts, reload the color registers, start the Blitter or service the audio. It can modify almost any register inside or outside the IC device, based on the TV screen coordinates given by the Beam Counter and the actual address encoded on the RGA bus. #### D-Audio (Four (4) Channels) There are four (4) audio channels, all of which are located outside of the DMA Controller IC. Each controller is independent and uses one DMA channel from the DMA Controller IC and fetches ### a commodore (\$ TITLE IC, N-CHANNEL-HMOS DMA CONTROLLER (PAL) "FAT AGNUS" 8371 SIZE DRAWING NO. 318071 REV SCALE SHEET 187 OF its data during a dedicated timing slot within horizontal blanking. This is accomplished by a controller asserting the DMAL input on the DMA Controller. ### E-Sprites (Eight (8) Channels) There are eight (8) independent Sprite controllers, each with its own DMA channel and its own dedicated time slot for DMA data transfer. Sprites are line buffered objects that can move very fast because their position is controlled by hardware registers and comparators. Each Sprite has two (2) 16 bit data registers, located outside the device, that define a 16 pixel wide Sprite with four (4) colors. Each has a horizontal position register (also located outside the device), a vertical start position register, aqud a vertical stop position register. This allows variable vertical size sprites. The Sprite DMA controller fetches image and position data automatically from anywhere in 512K of memory. . Sprites can be run automatically in DMA mode or they can be loaded and controlled by the microprocessor. Each Sprite can be reused vertically as often as desired. Horizontal reusing is also possible with microprocessor control. ### F-Disk (One (1) Channel) The disk controller, which is located outside of the DMA controller, uses a single DMA channel from the device. The controller uses this DMA time slot for data transfer and can read or write a block of data up to 128K anywhere in 512K of memory. ### G-Memory Refresh (One (1) Channel) The refresh controller uses a single DMA channel with its own time slots. It places RAS addresses on the memory address bus (MAs) during these slots, in order to refresh the dynamic RAM. Memory is refresh on every raster line. During the DMA no data transfer actually takes place. The register address bus (RGA) is used to supply video synchronizing codes. At this time RASO\* and RASI\* are low and CASU\* and CASL\* are inactive. #### 4.5. RAM AND REGISTER ADDRESSING The device generates RAM addresses from two sources, the processor ### a commodore a TITLE IC, N-CHANNEL-HMOS DMA CONTROLLER (PAL) "FAT AGNUS" 8371 SIZE DRAWING NO. 318071 REV SCALE SHEET 19 OF or from the device performing DMA cycles, selected by a multiplexer This multiplexer allows the processor to access RAM when AS\* and RAMEN\* are both low. At this time, the device also multiplexes the processor address (Al-Al8) onto the MA bus. The device places Al to A8 & Al7 on the MAO to MA9 outputs, respectively, during the row address time and places A9 to A16 & A18 on the MAO to MA9, respectively, during the column address time. The Al9 line is used by the IC to determine which RAS line is to be asserted. If Al9 is low, RASO\* is enabled, and if high, RAS1\* is enabled. The device also senses the LDS\* and UDS\* inputs to determine which CAS to drop. If LDS\* is low, the IC will drop CASL\* and if UDS\* is low, CASU\* is dropped. When the device needs to do a DMA cycle, the multiplexer disables the processor from accessing RAM by asserting the Data Bus Request Line (DBR\*). At this time, the device multiplexes its generated RAM address onto the MA lines and will only make RASO\* go low, unless it is a refresh cycle where RAS1\* will also go low. During a DMA cycle, the IC device will also assert both CASU\* and CASL\*, unless it is a refresh cycle where they both remain inactive. The device also generates RGA addresses from either the processor or device DMAs, each of which is selected by another internal multiplexer. This multiplexer allows the processor to perform a register read/write access when AS\* and RGEN\* are both low. The device then takes the low order byte of the processor address Al to A8 and reflects its value on the RGA output bus RGAl to RGA8. The device will reflect the status of PRW input on the RRW output line, to indicate a memory read or write operation. During a device DMA cycle, the multiplexer prevents the processor from doing a register access by asserting the DBR\* line. The device will then place the contents of its register address encoder onto the RGA bus. #### 5.0 REGISTER DESCRIPTION This DMA controller device contains 97 registers that can be accessed after the following conditions have been met. The state of AS\* and RGEN\* must be an active low level and the least 8 significant address bits (Al thru A8) must contain the valid address of the register to be accessed. Refer to Table 2 for complete list of register addresses and type. commodore (F 318071 TITLE IC, N-CHANNEL-HMOS DMA CONTROLLER (PAL) "FAT AGNUS" 8371 DRAWING NO. SIZE REV SHEET 20 OF SCALE The following is a detailed description of the register set. REGISTER FUNCTION AUD x LCH Audio channel x location (high 3 bits) AUD x LCL Audio channel x location (low 15 bits) This pair of registers contains the 18 bit starting address (location) of Audio channel x (x=0,1,2,3) DMA data. This is not a pointer register and therefore only needs to be reloaded if a diferent memory location is to be outputted. BLT x PTH BLT x PTL Blitter pointer to x (high 3 bits) Blitter pointer to x (low 15 bits) This pair of registers contains the 18 bit address of Blitter source (x=A,B,C) or dest. (x=D) DMA data. This pointer must be preloaded with the starting address of the data to be processed by the blitter. After the Blitter is finished it will contain the last data address (plus increment and modulo). LINE DRAW: BLTAPTL is used as an accumulator register and must be preloaded with the starting value of (2Y-X) where Y/X is the line slope. BLTCPT and BLTDPT (both H and L) must be preloaded with the starting address of the line. BLT x MOD Blitter Modulox This register contains the Modulo for Blitter source (x=A,B,C) or Dest (x=D). A Modulo is a number that is automatically added to the address then points to the start of the next line. Each source or destination has its own Modulo, allowing each to be a different size, while an identical area of each is used in the Blitter operation. LINE DRAW: BLTAMOD and BLTBMOD are used as slope storage registers and must be preloaded with the values (4Y-4X) and (4Y) respectively. Y/X=line slope BLTCMOD and BLTDMOD must both be preloaded with the width (in bytes) of the image into which the line is being drawn. (normally 2 times the screen width in words) BLTAFWM BLTALWM Blitter firstword mask for Source A Blitter last word mask for Source A . The patterns in these two registers are "anded" with the first and last words of each line of data from Source A into the Blitter. A zero in any bit overrides data from Source A. These registers should be set to all "ones" for fill mode or for line drawing mode. commodore TITLE IC, N-CHANNEL-HMOS DMA CONTROLLER (PAL) "FAT AGNUS" 8371 SIZE DRAWING NO. REV SCALE SHEET 21 OF #### BLTxDAT ### Blitter source x data register This register holds Source x (x=A,B,C) data for use by the Blitter. It is normally loaded by the Blitter DMA channel, however, it may also be preloaded by the microprocessor. LINE DRAW: BLTADAT is used as an index register and must be preloaded with 8000. BLTBDAT is used for texture. It must be preloaded with FF if no texture (solid line) is desired. #### BLTDDAT Blitter destination data register This register holds the data resulting from each word of Blitter operation until it is sent to a RAM destination. This is a dummy address and cannot be read by the micro. The transfer is automatic during Blitter operation. BLTCONO BLTCON1 Blitter control register 0 Blitter control register 1 These two control registers are used together to control Blitter operations. There are 2 basic modes, area and line, which are selected by bit 0 of BLTCON1, as shown below. AREA MODE ("normal") | BIT# | BLTCONO | BLTCON1 . | | |--------|----------------|--------------------|-----| | | | | | | 15 | ASH3 - | BSH3 | | | 14 | ASH2 | BSH2 | | | 13 | ASH1 | BSH1 | | | 12 | ASAO | BSH0 | | | 11 | USEA | Χ | | | 10 | USEB | X . | | | 09 | USEC | Χ | | | 08 | USED | Χ | | | 07 - | LF7 | X | 83 | | 06 | LF6 | Χ . | | | 05 | LF5 | X | | | 04 | LF4 | EFE | | | 03 | LF3 | IFE | | | 02 | LF2 | FCI | | | 01 | LF1 | DESC | 9.0 | | 00 | | LINE(=0). | | | ASH3-0 | Shift value of | A source | | | BSH3-0 | Shift value of | B source | | | | | it to use Source | A | | | | it to use Source I | | | | | it to use Source ( | | ### commodore G TITLE IC, N-CHANNEL-HMOS DMA CONTROLLER (PAL) "FAT AGNUS" 8371 DRAWING NO. SIZE - 318071 REV SCALE SHEET 22 OF USED Mode control bit to use Destination D LF7-0 Logic function minterm select lines EFE Exclusive fillenable IFE Inclusive fill enable FCI Fill carry input DESC Descending (decreasing address) control bit LINE Line mode control bit (set to 0) #### LINE DRAW: #### LINE MODE (line draw) | BIT# | BLTC | ONO | ·B | LTCON | I | •0 | |-------|------|-----|------|-------|--------|-------| | | | | - | | - | | | 15 | STAR | | | 0 | | 20 | | 14 | STAR | Γ2 | - 8 | . 0 | | | | 13 | STAR | r1 | | 0 | | | | 12 | STAR | ro | | . 0 | | (7) | | 11 | 1 | | | 0 | | | | 10 | 0 | | | 0 . | | 73 | | 09 | 1 | | (34) | 0 | N 2 | 800 | | 08 | 1 | | | 0 | (ja) 1 | 100 | | .07 | LF7 | * | | 0 | 1040 | 8.5 | | 06 | LF6 | | | SIGN | | | | 05 | LF5 | | | OVF | | 2 | | 04 | LF4 | | | SUD | | | | 03 | LF3 | 75 | | SUL | | | | 02 | LF2 | 12 | | AUL | | | | 01 | LF1 | | | SING | | (0.0) | | 00 | LFO | | 2 | LINE | (=1) | | | 25555 | | | 7.5 | | | | START3-0 Starting point of line (0 thru 15 hex) LF7-0 Logic function minterm select lines should be preloaded with 4A in order to select the equation D=(AC+ABC). Since A contains a single bit truee (8000), most bits will pass the C field unchanged (not A and C), but one bit will invert the C Field and combine it with texture (A and B and not C). The A bit is automatically moved across the word by the hardware. LINE Line mode control bit (set to 1) SIGN Sign flag OVF Word overflow flag SING Single bit per horiz. line for use with subsequent Area Fill SUD Sometimes Up or Down (=AUD\*) SUL Sometimes Up or Left AUL Always Up or Left The 3 bits above select the Octant for ### commodore TITLE IC, N-CHANNEL-HMOS DMA CONTROLLER (PAL) "FAT AGNUS" 8371 SIZE | DRAV DRAWING NO. 318071 REV SCALE SHEET 23 OF | ine | draw: | | | | | |-----|-------|-----|-------|-----|-----| | | OCT | SU | D . | SUL | AUL | | | | | | | | | | 0 | 1 | 8 21. | 1 | 0 | | | 1 | 0 | 4 30 | 0 | 1 | | | 2 | . 0 | | 1 | 1. | | | 3 | 1 | | 1 | . 1 | | | 4. | . 1 | - A | 0 | . 1 | | | 5 | 0 | | . 1 | 0 | | | 6 | 0 | | 0 - | 0 | | 20 | 7 | 1 | F 25 | 0 | 0 | BLTSIZE Blitter start and size (Window, width height) This register contains the width and height of the blitter operation (in line mode width must=2, height = line length) Writing to this register will start the Blitter, and should be done last, after all pointers and control registers have been initialized. BIT# 15, 14, 13, 12, 11, 10, 09, 08, 07, 06, 05, 04, 03, 02, 01, 00 h9 h8 h7 h6 h5 h4 h3 h2 h1 h0, w5 w4 w3 w2 w1 w0 h=Height=Vertical lines (10 bits=1024 lines max) w=Width =Horiz pixels (6 bits=64 words=1024 pixels max) LINE DRAW: BLTSIZE controls the line length and starts the line draw when written to. The h field controls the line length (10 bits gives lines up to 1024 dots long). The w field must be set to 02 for all line drawing. BPLxPTH BPLxPTL Bit plane x pointer (high 3 bits) Bit plane x pointer (low 15 bits) This pair of registers contains the 18 bit pointer to the address of Bit plane x (x=1,2,3,4,5,6) DMA data. This pointer must be reinitialized by the processor or Copper to point to the beginning of Bit Plane data every vertical blank time. > BPL1MOD BPL2MOD Bit plane modulo (odd planes) Bit plane modulo (even planes) These registers contain the Modulos for the odd and even bit planes. A Modulo is a number that is automatically added to the address at the end of each line, in order that the address then points to the start of the next line. Since they have separate modulos, the odd and even bit planes may have sizes that are different from each other, as well as different from the Display Window size. BPLCONO Bit plan control register (miscellaneous control bits) This register controls the operation of the Bit Planes and various ### C. commodore 318071 TITLE IC, N-CHANNEL-HMOS DMA CONTROLLER (PAL) "FAT AGNUS" 8371 DRAWING NO. SIZE REV SCALE 24 OF SHEET ### aspects of the display. | BIT# | 95 | BPLCONC | |------|------------|---------| | | | | | 15 . | | HIRES | | 14 | | BPU2 | | 13 | | BPU1 | | 12 | | BPUO | | 11 | | HOMOD | | 10 | | DBLPF | | 09 | | COLOR | | 08 | | GAUD | | 07 | | X | | 06 | | X | | 05 | | X | | 04 | | X | | 03 | | LPEN | | 02 | 200 | LACE | | 01 | | ERSY | | 00 | | X | | | 05/19/1/20 | 122 | HIRES=High resolution (640) mode BPU =Bit-plane use code 000-110 (NONE through 6 inclusive) HOMOD=Hold and Modify mode DBLPF=Double playfield (PF1=odd PF2=even bit planes) COLOR=Composite video COLOR enable GAUD=Genlock audio enable (mixed on BKGND pin during vertical blanking LPEN=Light pen enable (reset on power up) LACE=Interlace enable (reset on power up) ERSY=External Resync (HSYNC, VSYNC pads become inputs) (reset on power up) COPCON Copper control register This is a l bit register that when set true, allows the Copper to access the Blitter hardware. This bit is cleared by power on reset, so that the Copper cannot access the Blitter hardware. | BIT# | NAME | FUNCTION | | |------|---------|----------------------|---------------| | | | | | | 01 | CDANG . | Copper danger mode. | Allows Copper | | | | access to Blitter if | true. | COPJMP1 Copper restart at first location COPJMP2 Copper restart at second location These addresses are strobe addresses, that when written to cause the Copper to jump indirect using the address contained in the First or Second Location registers described below. The Copper itself can write to these addresses, causing its own jump indirect. ### commodore TITLE IC, N-CHANNEL-HMOS DMA CONTROLLER (PAL) "FAT AGNUS" 8371 DRAWING NO. SIZE REV SCALE SHEET 25 OF COP1LCH COP1LCL COP2LCH COP2LCL Copper first location register (high 3 bits) Copper first location register (low 15 bits) Copper second location register (high 3 bits) Copper second location register (low 15 bits) COPINS Copper instruction fetch identify This is a dummy address that is generated by the Copper whenever it is loading instructions into its own instruction register. This actually occurs every Copper cycle except for the second (IR2) cycle of the MOVE instruction. The Three types of instructions are shown below. MOVE Move immediate to dest WAIT Wait until beam counter is equal to, or greater than. (keeps Copper off of bus until beam position has been reached) SKIP Skip if beam counter is equal to, or greater than. (skips following MOVE inst. unless beam position has been reached) | | MOY | VE | | WAIT | UNTIL | | SKIP | IF | | |------|-----|------|--------|-------|-------|---------|------|-------|---| | BIT# | IR1 | IR2 | \$ B | IR1 | IR2 | | IR1 | IR2 | | | | | | pg 2 9 | | | | | | | | 15 | X | RD15 | 14 | VP7 | BFD | * | VP7 | BFD | * | | 1.4 | X | RD14 | 8 | VP6 | VE6 | 4 | VP6 | VE6 | | | 13 | X | RD13 | | VP5 | . VE5 | | VP5 | VE5 | | | 12 | X | RD12 | | VP4 | VE4 | | VP4 | VE4 | | | 11 | X | RD11 | | ·VP3 | ·VE3 | | VP3 | VE3 | | | 10 | X | RD10 | 41 | VP2 · | VE2 | | VP2 | VE2 | | | 09 | X | RD09 | 63 | VP1 | VE1 | | VP1 | · VEl | | | 08 | DA8 | RD08 | - 2 | VP0 | VEO. | 30<br>5 | VP0 | VEO | | | 07 | DA7 | RD07 | Si 20 | HP8 | HE8 | | HP8 | HE8 | | | 06 | DA6 | RD06 | | HP7 | HE7 | | HP7 | HE7 | | | 05 | DA5 | RD05 | | .HP6 | HE6 | | HP6 | HE6 | | | 04 | DA4 | RD04 | | HP5 | HE5 | | HP5 | HE5 | | | 03 | DA3 | RD03 | 22 | HP4 | HE4 | | HP4 | HE4 | | | 02 | DA2 | RD02 | | HP3 | HE3 | | HP3 | HE3 | | | 01 | DAl | RD01 | | HP2 | HE2 | | HP2 | HE2 | | | 00 | 0 | RDOO | | . 1 | 1. | * | 1 | 1 | | IRl=First instruction register. - IR2=Second instruction register - DA =Destination Address for MOVE instruction. Fetched during IRl time, used during IR2 time on RGA bus. - RD =RAM data moved by MOVE instruction at IR2 time directly from RAM to the address given by the DA field. - VP =Vertical Beam Position comparison bit - HP =Horizontal Beam Position comparison bit - VE =Enable comparison (mask bit) - HE =Enable comparison (mask bit) ### commodore TITLE IC, N-CHANNEL-HMOS DMA CONTROLLER (PAL) "FAT AGNUS" 8371 | C | 7 | 5 | |---|---|---| | 0 | 4 | | \*NOTE BFD=Blitter finished disable. When this bit is true, the Blitter Finished flag will have no effect on the Copper. When this bit is zero the Blitter Finished flag must be true (in addition to the rest of the bit comparisons) before the Copper can exit from its wait state, or skip over an instruction. Note that the V7 comparison cannot be masked. The Copper is basically a 2 cycle machine that requests the bus only during odd memory cycles. (4 memory cycles per in) This prevents collisions with Display, Audio, Disk, Refresh, and Sprites, all of which use only even cycles. It therefore needs (and has) priority over only the Blitter and Micro. There are only three types of instructions: MOVE immediate, WAIT until, and SKIP if. All instructions (except for WAIT) require 2 bus cycles (and two instruction words). Since only the odd bus cycles are requested, 4 memory cycle times are required per instruction. (memory cycles are 280 ns) There are two indirect jump registers COPILC and COPILC. These are 18 bit pointer registers whose contents are used to modify the program counter for initialization or jumps. They are transferred to the program counter whenever strobe addresses COPJMP1 or COPJMP2 are written. In addition COPILC is automatically used at the beginning of each vertical blank time. It is important that one of the jump registers be initialized and its jump strobe address hit, after power up but before Copper DMA is initialized. This insures a determined startup address and state. DIWSTRT DIWSTOP Display window start (upper left vertical-horizontal positon) Display window stop (lower right vertical-horizontal position) These registers control the Display window size and position, by locating the upper left and lower right corners. BIT# 15,14,13,12,11,10,09,08,07,06,05,04,03,02,01,00 USE V7 V6 V5 V4 V3 V2 V1 V0 H7 H6 H5 H4 H3 H2 H1 H0 DIWSTRT is vertically restricted to the upper 2/3 of the display (V8=0), and horizontally restricted to the left 3/4 of the display (H8=0). DIWSTOP is vertically restricted to the lower 1/2 of the display (V8=/=V7), and horizontally restricted to the right 1/4 of the display (H8=1). DDFSTRT DDFSTOP Display data fetch start (horiz.position) Display data fetch stop (horiz.position) These registers control the horizontal timing of the beginning and commodore & TITLE IC, N-CHANNEL-HMOS. DMA CONTROLLER (PAL) "FAT AGNUS" 8371 SIZE DRAWING NO. - 318071 REV SCALE SHEET 27 OF end of the Bit Plane DMA display data fetch. The vertical Bit Plan DMA timing is identical to the Display windows described above. The Bit Plan Modulos are dependent on the Bit Plane horizontal size, and on this data fetch window size. Register bit assignment BIT# 15,14,13,12,11,10,09,08,07,06,05,04,03,02,01,00 X X X X X X X X HB H7 H6 H5 H4 H3 X X USE (X bits should always be driven with 0 to maintain upward compatibility) The tables below show the start and stop timing for different register contents. DDFSTRT(Left edge of display data fetch) | PURPOSE | H8, H7, H6, H5, H4 | |--------------------|--------------------| | | | | Extra wide (max) * | 0 0 1 0 1 | | wide | 0 0 1 1 0 | | normal | 0 0 1 1 1 | | narrow | -0 1 0 0 0 | DDFSTOP (Right edge of display data fetch) | PURPOSE | * | Н8, | н7, | Н6, | Н5, | H4 | | |------------|---|-----|-----|-----|-----|----|---| | | | | | | | | • | | narrow | | .1 | 1 | 0 | 0 | 1 | | | normal | | 1 | 1 | 0 | 1 | 0 | | | wide (max) | | 1 | 1 | 0 | . 1 | 1 | | DMACON DMACONR DMA control write (clear or set) DMA control (and Blitter status) read This register controls all of the DMA channels, and contains Blitter DMA status bits. | BIT# | FUNCTION | DESCRIPTION | |------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 15 | SET/CLR | Set/Clear control bit. Determines if bits written with a 1 get set or cleared. | | 14 | BBUSY | Blitter busy status bit (read only) | | 13 | BZERO | Blitter logic zero status bit. (read only) | | 12 | X | | | 11 | X | | | 10 | BLTPRI | Blitter DMA priority (over CPU micro) (also called "Blitter Nasty") (disables /BLS pin, preventing micro from stealing any bus cycles while blitter DMA is running) | | 09 | DMAEN | Enable all DMA below . | | 08 | DPLEN | Bit Plane DMA enable. | | 07 | COPEN | Copper DMA enable | ### commodore TITLE IC, N-CHANNEL-HMOS DMA CONTROLLER (PAL) "FAT AGNUS" 8371 | C | 7 | | |----|---|---| | ٠, | 4 | - | | 06 | BLTEN | Blitter DMA enable | |----|--------|----------------------------| | 05 | SPREN | Sprite DMA enable | | 04 | DSKEN | Disk DMA enable | | 03 | AUD3EN | Audio channel 3 DMA enable | | 02 | AUD2EN | Audio channel 2 DMA enable | | 01 | AUD1EN | Audio channel 1 DMA enable | | 00 | AUDOEN | Audio channel 0 DMA enable | | | | | | | DSKPTH | Disk pointer (high 3 bits) | | | DSKPTL | Disk pointer (low 15 bits) | This pair of registers contains the 18 bit address of Disk DMA data. These address registers must be initialized by the processor or Copper before disk DMA is enabled. REFPTR Refresh pointer This register is used as a Dynamic RAM refresh address generator. It is writeable for test purposes only, and should never be written by the microprocessor. Sprite x pointer (high 3 bits) SPRXPTH SPRXPTL Sprite x pointer (low 15 bits) This pair of registers contains the 18 bit address of Sprite x (x=0,1,2,3,4,5,6,7) DMA data. These address registers must be initialized by the processor or Copper every vertical blank time. SPRxPOS Sprite x vertical-horizontal position data SPRXCTL Sprite x vertical-horizontal These 2 registers work together as position, size and feature Sprite control registers. They are usually loaded by the Sprite DMA channel, during horizontal blank, however they may be loaded by either processor any time. SPRxPOS register: BIT# FUNCTION SYM 15-08 SV7-SV0 Start vertical value. High bit (SV8) is in SPRxCTL reg below. 07-00 SH8-SH1 Start horizontal value. Low bit (SHO) is in SPRxCTL reg. below. SPRxCTL register (writing this address dissables sprite horizontal comparator circuit): BIT# SYM FUNCTION 15-08 EV7-EV0 End (stop) vert.value.low 8 bits Sprite attach control bit (odd sprites) 07 ATT ### commodore 3 TITLE IC, N-CHANNEL-HMOS DMA CONTROLLER (PAL) "FAT AGNUS" 8371 06-04 X Not used 02 SV8 Start vert. value high bit 01 EV8 End (stop) vert. value high bit 00 SH0 Start horiz. value Low bit VPOSR Read vertical most significant bit (and frame flop) VPOSW Write vertical most significant bit (and frame flop) BIT# 15,14,13,12,11,10,09,08,07,06,05,04,03,02,01,00 USE LOF----- V8 LOF=Long frame (auto toggle control bit in BPLCONO) VHPOSR Read vertical and horizontal position of beam or lightpen VHPOSW Write vertical and horizontal position of beam or lightpen BIT# 15,14,13,12,11,10,09,08,07,06,05,04,03,02,01,00 USE V7 V6 V5 V4 V3 V2 V1 V0,H8 H7 H6 H5 H4 H3 H2 H1 RESOLUTION=1/160 OF SCREEN WIDTH (280 NS) commodore TITLE IC, N-CHANNEL-HMOS DMA CONTROLLER (PAL) "FAT AGNUS" 8371 SIZE DRAWING NO. 318071 REV SCALE SHEET 30 OF ### TABLE 2 - REGISTER ADDRESSES | | NAME* | ADDRESS** A8 thru A0 | <u>TYPE</u> *** | DESCRIPTION | |---|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------------------------------------| | | BLTDDAT | & <b>*</b> 000 | ER . | Blitter destination (dummy address) | | | DMACONR | *002 | K. | DMA control (and Blitter status) | | | VPOSR | *004 | · R | Read Vertical - MSB | | | VHPOSR | *006 | . R | Read Vertical and horizontal | | | DSKPTH | +*020 | w : | Position of beam. Disk pointer (High (3) bits) | | þ | DSKPTL | +*022 | W | Disk pointer (Low 15 bits) | | | REFPTR | &*028 · | . W | Refresh pointer. | | | · VPOSW | *02A | W | Write Vertical MSB | | | VHPOSW | *02C | W | Write Vertical and horizontal | | | | | 122. E | Position of beam | | | · COPCON | *02E | · · · W | Co-processor control register | | | STREOU | &*038 | S | Strobe for horizontal sync. | | | 250 | The state of s | (A) | with VB and EQU | | | STRVBL | &*03A . | S | Strobe for horizontal sync. | | | | ** | 84 50 | with VB | | | STRHOR | &*03C | · S | Strobe for horizontal sync. | | | STRLONG . | &*03E | 1872 F | Strobe for identification | | | 39 | | 887 | of long horizontal line | | | BLTCONO | -040 | | Blitter control register 0 | | | BLTCON1 | -042 | D. Carlo | Blitter | | | BLTAFWM | -044 | W. | Blitter first word mask for | | | | | ** | source A | | | BLTALWM | -046 | NG. | Blitter last word mask for | | | | | | source A | | | BLTCPTH | +-048 | . W | Blitter pointer to source C | | | ©. | | | (High 3 bits) | | | BLTCPTL | +-04A | . W . | Blitter pointer to source C | | | | | | (Low 15 bits) | | | BLTBPTH | +-04C | . W | Blitter pointer to source B | | | | | Frank (4.00) | (High 3 bits) | | | BLTBPTL | +-04E | | Blitter pointer to source B | | | DT (0 4 1) (0 11 | | | (Low 15 bits) | | | BLTAPTH | +-050 | | Blitter pointer to source A | | | DT m A Dmt | . 050 | 40 0000 | (High 3 bits) | | | BLTAPTL | +-052 | | Blitter pointer to source A | | | BLTDPTH | 1.05/ | VII 40000 CM 000 | (low 15 bits) | | | DLIDIIN | +-054 | | Blitter pointer to destination D | | | BLTDPTL | +-056 | F 55 F | (High 3 bits) | | | DUIDLIL | 1-000 | | Blitter pointer to destination D | | | BLTSIZE | -058 | | (Low 15 bits) | | | | 050 | | Blitter start and size (window, | | | BLTCMOD | -060 | | width and height) | | | | | W | Blitter modulo for source C | | | | | | | ## & commodore & TITLE IC, N-CHANNEL-HMOS DMA CONTROLLER (PAL) "FAT AGNUS" 83,71 SIZE DRAWING NO. 318071 REV SCALE SHEET 31 OF | 15 E | TABLE 2 -F | REGISTER ADDRESSES | (cont"d) (2) | |-----------|------------------|--------------------|------------------------------------------------------------| | * = * | | | (00.10 0) | | BLTBMOD | -062 | W | Blitter modulo for source B | | BLTAMOD | -064 | W | Blitter modulo for source A | | BLTDMOD | -066 | W | Blitter modulo for destination D | | BLTCDAT | &-070 | W | Blitter source C data register | | BLTBDAT | &-072 | W . | Blitter source B data register | | BLTADAT | &-074 | W | Blitter source A data register | | COPILCH | +080 | W . | Co-processor first location register | | 60D17 67 | | 1 12 1 | (High 3 bits) | | COPILCL | +082 | W | Co-processor first location register (Low 15 bits) | | COP2LCH | +084 | W | Co-processor second location register | | | and the state of | | (High 3 bits) | | COP2LCL | +086 | W . | Co-processor second location | | | 000 | | register (Low 15 bits) | | COPJMP1 | 088 | . S | Co-processor restart at first | | 20D TVD2 | 004 | | location | | ·COPJMP2 | 08A | . S | Co-processor restart at second | | CODING | 000 | | location | | COPINS | 08C | . w | Co-processor instruction fetch | | DIWSTRT | 08E | · w | identify Diamlay window start (upper wortical | | DIWSIRI | USE | W | Display window start (upper vertical -horizontal position) | | DIWSTOP | 090 | -W | Display window stop (lower right | | | | | vertical-horizontal position) | | DDFSTRT | 092 | W | Display bit plane data fetch | | | | H H H H H H H | start (horizontal position) | | DDFSTOP | 094 | . W | Display bit plane data fetch | | | | | stop (horizontal position) | | DMACON | 096 | W | DMA control write (clear or set) | | TNOTENA | 004 | STT 80 | T | | INTENA | - 09A | . W. | Interrupt Enable bits (clear or set | | INTREQ | .096 | 7.7 | bits) Interrupt Personal bits (aleem or | | INTREQ | .090 | | Interrupt Request bits (clear or set bits) | | AUDOLCH | +0A0 | . W | Audio channel O location (High | | | | | 3 bits) | | AUDOLCL | +0A2 | W | Audio channel 0 location (Low 15 bits) | | AUD1LCH | .+OBO | W | Audio channel 1 location (High 3 bits) | | AUDILCL | +0B2 | W | Audio channel 1 location (Low 15 bits) | | AUD2LCH | +0C0 | . W | Audio channel 2 location (High 3 bits) | | AUD2LCL | +0C2 | W . | Audio channel 2 location (Low 15 bits) | | AUD3LCH | +0D0 | W . | Audio channel 3 location (High 3 bits) | | AUD3LCL | +0D2 | W. | Audio channel 3 location (Low 15 bits) | | BLIPTH | +0E0 | | | | ** | | . W | Bit plane 1 pointer (High 3 bits) | | BL1PTL | +0E2 | W | Bit plane 1 pointer (Low 15 bits) | | BPL2PTH | +0E4 | W | bit plane 2 pointer (High 3 bits) | | BPL2PTL | +0E6 | W | Bit plane 2 pointer (Low 15 bits) | | . BPL3PTH | +0E8 | W | Bit plane 3 pointer (High 3 bits) | | BPL3PTL | +OEA | . W , | Bit plane 3 pointer (Low 15 bits) | | | .00 | | TITLE IC, N-CHANNEL-HMOS | Commodore G IIILE IC, N-CHANNEL-HMOS DMA CONTROLLER (PAL) "FAT AGNUS" 8371 DRAWING NO. SIZE 318071 REV SCALE 32 OF SHEET | | | TABLE 2 - | REGIST | ER ADDRES | SSES | (cont'd) | (3) | |-----|--------------------|-----------|---------------|-----------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------| | 13 | BPL4PTH | +OEC | | W. | 8 % | Bit plane 4 | pointer (High 3 bits) | | | BPL4PTL | +OEE | | W | .0. | Bit plane 4 | pointer (Low 15 bits) | | | BPL5PTH . | +0F0 | 30 | W | 5e | | pointer (High 3 bits) | | | BPL5PTL | +0F2 | 64 | . W . | | _ | pointer (Low 15 bits) | | | BPL6PTH | +0F4 | 160 3 | W | | | pointer (High 3 bits) | | | BPL6PTL | +0F6 | | W | | | pointer (Low 15 bits) | | | BPLCONO | 100 | 2.7 | W | 36 | | ontrol register | | | 22 200110 | | | 220 | | Talker and a market fill for any and a second | ous control bits) | | | BPL1MOD | 108 | | W: | | Programme and the first of the second | odulo (Odd planes) | | | BPL2MOD | 10A | 1.50 | W | | | odulo (Even planes) | | | SPROPTH | +120 | | W | | | inter (High 3 bits) | | | SPROPTL | +122 | 6 | W | 18 | | inter (Low 15 bits) | | | SPR1PTH . | +124 | | W | | 1 | inter (High 3 bits) | | | SPR1PTL | +126 | | W | | | inter (Low 15 bits) | | | SPR2PTH | +128 | | . W | | AND A DESCRIPTION OF THE PROPERTY OF THE PROPERTY OF | inter (High 3 bits) | | | SPR2PTH | +12A | | 1.7 | | | | | | SPR3PTH | +12C | | . W . | | | nter (Low 15 bits) | | | SPR3PTL | | E 18 | W<br>T.T | | | nter (High 3 bits) | | | SPR4PTH | +12E | | W | | [18] [18] 12 HOUSE HOUS | nter (Low 15 bits) | | | | +130 | | W | | | nter (High 3 bits) | | | SPR4PTL<br>SPR5PTH | +132 | | W | 5 | | nter (Low 15 bits) | | | SPR5PTL | +134 | | W<br>T7 | | | nter (High 3 bits) | | 8 | | +136 | | . W | #5<br>02 | | nter (Low 15 bits) | | | SPR6PTH | +138 | 11 1/5<br>*11 | W | 19 | T | nter (High 3 bits) | | | SPR6PTL | +13A | | W | | - [[10] [10] [10] [10] [10] [10] [10] [10 | nter (Low 15 bits) | | | SPR7PTH | +13C | e e | W | | | nter (High 3 bits) | | | SPR7PTL | +13E | 211 | W | | | nter (Low 15 bits) | | | SPROPOS | %140 | | W | | | tical-horizontal | | | anna amr | | | 20 77 | _ = | start positi | | | | SPROCTL | %142 | | W | 390 | Sprite 0 ver and control | tical stop position · | | | SPR1POS | 7148 | ((*)) | W | 170 | | tical-horizontal start | | | | 702.10 | 77 199 | | | position data | | | | SPRICTL | %14A | • . | W. | | - Carrier and Carr | tical stop position | | | | 702 111 | | (M) | G# (F) | and control | - D | | | SPR2POS | %150 | | W | 53 | NAME OF THE PARTY | tical-horizontal start | | | 01.112.00 | 70150 | | . " | | position data | | | | SPR2CTL | %152 | * * | W · | | | | | | DIMEOIL | | 356 | | | control data | tical stop position and | | | SPR3POS. | 7158 | | W | | | A11 132 T | | | DI NOI OU. | %1J0 | 2000 | W | | | tical-horizontal start | | | SPR3CTL | %15A. | | 1.7 | | position data | 107 | | e e | DIRJOIL | /o LJA. | | . W | 5.50 | | tical stop position and | | | SPR4POS | %160 | | T.7 | | control data | The services when any | | | 51 141 05 | /0100 | £11 | W . | | - And the same of | tical-horizontal start | | | SPR4CTL | 7160 | ija mali | T.7 | | position data | | | | DI K4OIL | %160 | | W | | | tical stop position and | | | SPR5POS | 7168 | | 1.7 | | control data. | | | | SO 1CA 16 | %T00 | (4000) | W | | 1 (50) | tical-horizontal start | | | | | | 9 2 | | position data | i. | | | | , # | | 6) | | | | | | | | | | | | | ## Cacommodore Ca TITLE IC, N-CHANNEL-HMOS DMA CONTROLLER (PAL) "FAT AGNUS" 8371 | SIZE | DRAWING | NO | |------|---------|----| | | | | | *** | | |---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | | TABLE 2 - REGISTER ADDRESSES (CONT'D) (4) | | SPR5CTL | %16A W Sprite 5 vertical stop position and control data. | | SPR6POS | %170 W Sprite 6 vertical-horizontal start position data. | | SPR6CTL. | %172 W Sprite 6 vertical stop position and control data. | | SPR7POS | %178 Sprite 7 vertical-horizontal start position data. | | SPR7CTL | %17A W . Sprite 7 vertical stop position and control data. | | | 18 bit pointer that addresses DMA data must be reloaded by a processor before use. (Vertical blank for Bit Plane and Sprite pointers and prior to starting the Blitter for Blitter pointers.) 18 bit location (starting address) of DMA data. Used to automatically restart pointers, such as the co-processor program counter (during vertical blank) and the Audio sampler counter (whenever the audio length count is finished. | | | 15 bit modulo. A number that is automatically added to the memory address at the end of each line to generate the address for for the beginning of the next line. This allows the Blitter (or the Display Window) to operate on (or display) a window of data that is smaller than the actual picture in memory (memory map). Uses 15 bits plus sign extended. | | ** & | Register used by DMA channel only | | % | Register used mostly by DMA channel and processor sometimes. | | + | Address register pair. Low word uses DB1-DB15. High word uses DB0-DB2. | | * | Address not writeable by co-processor. | | - | Address not writeable by co-processor, unless COPON is set true. | | *** W = Write | | R = Read S = Strobe ER = Early Read TITLE IC, N-CHANNEL-HMOS DMA CONTROLLER (PAL) "FAT AGNUS" 8371 | | | | | 1 | | 1 | |------|-------------|--------|-----|-------|-------------|---| | SIZE | DRAWING NO. | 318071 | REV | SCALE | SHEET 34 OF | | #### APPENDIX ### DMA TIME SLOT ALLOCATION / HORIZONTAL LINE - a. These operations only take slots if the associated operation is being performed. - NOTE: Copper Data Move instructions require four (4) Copper Wait instructions require six (6) slots. b. This cycle O appears to exclude one of the memory refresh cycles. This is not the case. Actual system hardware demands certain specific values for data fetch start and display start. Therefore this timing chart has been adjusted to match those requirements. ### C commodore IC, N-CHANNEL-HMOS DMA CONTROLLER (PAL) "FAT AGNUS" 8371 DRAWING NO. SIZE 318071 REV SCALE TITLE 35 OF SHEET ### APPENDIX 'A (CONT'D) ### DMA Time Slot Allocation / Horizontal line (cont.) ### commodore TITLE IC, N-CHANNEL-HMOS DMA CONTROLLER (PAL) "FAT AGNUS" 8371 SIZE DRAWING NO. 318071 REV SCALE SHEET 36 OF ### APPENDIX A (CONT'D) ### CMA Time Slot Allocation / Horizontal line (cont'd) Data fetch start can only be specified at even multiples of 8 clocks. This is the clock position which should be specified for the normal width display. (20 word feton for 320 place 40 word fetch for 640 pixel width). Five clocks must occur before the data which was fatched for a particular position cen appear anscreen. For example, if data fetch start is specified as 38, it will not be available for display until clock number 45. commodore IC, N-CHANNEL-HMOS TITLE DMA CONTROLLER (PAL) "FAT AGNUS" 8371 SIZE DRAWING NO. 318071 REV SCALE SHEET 37 OF #### (CONT'D) APPENDIX ### DIMA Time Slot Allocation / Horizontal line (cont'd) A nardware data-fetch stop has been Installed at count DG so as to provent the bit-plane deta-fatch from overrunning the time alloted for the memory refresh or alsk DMA. Cammodore TITLE IC, N-CHANNEL-HMOS DMA CONTROLLER (PAL) "FAT AGNUS" 8371 SIZE DRAWING NO. 318071 REV SCALE 38 OF SHEET ### APPROVED VENDORS LIST This page must be detached from the remainder of the drawing whenever this drawing is shown or transmitted to vendors. | COMMODORE PART NUMBER | VENDOR NAME | VENDOR PART NUMBER | |-----------------------|-------------|--------------------| | | | | | 318071-01 | MOS | 8371R1 | | 318071-01 | MOS | 8371R2 | | C FEE | commodore C | |-------|-------------| | `~~` | | | | | TITLE IC, N-CHANNEL-HMOS DMA CONTROLLER (PAL) "FAT AGNUS" 8371 SIZE DRAWING NO. 318071 SCALE SHEET i OF i